Direct and indirect effects of elevated CO(2) on whole-shoot respiration in ponderosa pine seedlings.
نویسندگان
چکیده
We determined the short-term direct and long-term indirect effects of CO(2) on apparent dark respiration (CO(2) efflux in the dark) in ponderosa pine (Pinus ponderosa Dougl. ex Laws.) seedlings grown in 35 or 70 Pa CO(2) partial pressure for 163 days in naturally lit, controlled-environment chambers. Two soil N treatments (7 and 107 ppm total N, low-N and high-N treatments, respectively) were imposed by watering half the plants every 2 weeks with 15/15/18 fertilizer (N,P,K) and the other half with demineralized water. Direct effects of ambient CO(2) partial pressure on apparent dark respiration were measured during short-term manipulations (from minutes to hours) of the CO(2) environment surrounding the aboveground portion of individual seedlings. Short-term increases in the ambient CO(2) partial pressure consistently resulted in significant decreases in CO(2) efflux of seedling in all treatments. Efflux of CO(2) decreased by 3 to 13% when measurement CO(2) partial pressure was increased from 35 to 70 Pa, and by 8 to 46% over the entire measurement range from 0 to 100 Pa. No significant interactions between the indirect effects of growth CO(2) partial pressure and the direct effects of the measurement CO(2) partial pressure were found. Seedlings grown in the high-N treatment were significantly less sensitive to short-term changes in CO(2) partial pressures than seedlings grown in the low-N treatment. Apparent respiration tended to decrease in seedlings grown in elevated CO(2), but the decrease was not significant. Nitrogen had a large effect on CO(2) efflux, increasing apparent respiration more than twofold on both a leaf area and a leaf or shoot mass basis. Both the direct and indirect effects of elevated CO(2) were correlated with changes in the C/N ratio. A model of cumulative CO(2) efflux for a 160-day period demonstrated that, despite a 49% increase in total plant biomass, seedlings grown in the high-N + high-CO(2) treatment lost only 2% more carbon than seedlings grown in the high-N + low-CO(2) treatment, suggesting increased carbon use efficiency in plants grown in elevated CO(2). We conclude that small changes in instantaneous CO(2) efflux, such as those observed in ponderosa pine seedlings, could scale to large changes in carbon sequestration.
منابع مشابه
Interactive effects of elevated CO2 and temperature on water transport inponderosa pine.
Many studies report that water flux through trees declines in response to elevated CO(2), but this response may be modified by exposure to increased temperatures. To determine whether elevated CO(2) and temperature interact to affect hydraulic conductivity, we grew ponderosa pine seedlings for 24 wk in growth chambers with one of four atmospheric CO(2) concentrations (350, 550, 750, and 1100 pp...
متن کاملStem maintenance and construction respiration in Pinus ponderosa grown in different concentrations of atmospheric CO(2).
To determine whether long-term growth in enriched CO(2) atmospheres changes the woody tissue respiration component of aboveground carbon budgets, we measured woody tissue respiration of stems of 3-year-old ponderosa pine (Pinus ponderosa Laws.) grown in ambient (350 ppm) or twice ambient (700 ppm) atmospheric CO(2) concentrations in open-top field chambers located in Placerville, CA. Total resp...
متن کاملMechanisms of Phosphorus Acquisition for Ponderosa Pine Seedlings under High CO2 and Temperature
To test the hypothesis that elevated atmospheric CO # and elevated temperature, simulating current and predicted future growing season conditions, act antagonistically on phosphorus acquisition of ponderosa pine, seedlings were grown in controlled-environment chambers in a two temperature (25}10 °C and 30}15 °C)¬two CO # (350 and 700 μl−") experimental design. Mycorrhizal seedlings were watered...
متن کاملOffsetting changes in biomass allocation and photosynthesis in ponderosa pine (Pinus ponderosa) in response to climate change.
We examined the effect of climate on aboveground biomass allocation of ponderosa pine (Pinus ponderosa) by measuring trees in disjunct forest stands growing on the same substrate at high-elevation montane sites and low-elevation desert sites. Climatic differences between the sites were comparable to the difference between present and future climates of interior North America that is expected to...
متن کاملOsmotic adjustment induced by elevated ozone: interactive effe
and elevated ozone on tissue water relations of mature clones of a fast-growing genotype of ponderosa pine (Pinus ponderosa Dougl. ex Laws.) and their half-sib seedlings. Whole seedlings and branches of mature trees were exposed to acid rain (pH 5.1 and 3.0) and ozone (ambient and twice-ambient) treatments in open-bottomed chambers. The acid rain treatment was applied to foliage weekly from Jan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Tree physiology
دوره 16 1_2 شماره
صفحات -
تاریخ انتشار 1996